首页> 外文OA文献 >Co-salient Object Detection Based on Deep Saliency Networks and Seed Propagation over an Integrated Graph
【2h】

Co-salient Object Detection Based on Deep Saliency Networks and Seed Propagation over an Integrated Graph

机译:基于深度网络和种子的共显着目标检测   集成图的传播

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a co-salient object detection method to find commonsalient regions in a set of images. We utilize deep saliency networks totransfer co-saliency prior knowledge and better capture high-level semanticinformation, and the resulting initial co-saliency maps are enhanced by seedpropagation steps over an integrated graph. The deep saliency networks aretrained in a supervised manner to avoid online weakly supervised learning andexploit them not only to extract high-level features but also to produce bothintra- and inter-image saliency maps. Through a refinement step, the initialco-saliency maps can uniformly highlight co-salient regions and locate accurateobject boundaries. To handle input image groups inconsistent in size, wepropose to pool multi-regional descriptors including both within-segment andwithin-group information. In addition, the integrated multilayer graph isconstructed to find the regions that the previous steps may not detect by seedpropagation with low-level descriptors. In this work, we utilize the usefulcomplementary components of high-, low-level information, and severallearning-based steps. Our experiments have demonstrated that the proposedapproach outperforms comparable co-saliency detection methods on widely usedpublic databases and can also be directly applied to co-segmentation tasks.
机译:本文提出了一种共凸目标检测方法,可以在一组图像中找到共凸区域。我们利用深度显着性网络来传递共同显着性先验知识并更好地捕获高级语义信息,并且通过集成图上的种子传播步骤来增强所得的初始共同显着性图。深度显着性网络是以有监督的方式进行训练的,以避免在线弱监督学习,并利用它们不仅提取高级特征,而且还生成图像内和图像间的显着性图。通过细化步骤,初始共同显着图可以均匀地突出共同显着区域并定位精确的对象边界。为了处理大小不一致的输入图像组,我们建议合并包含区域内信息和组内信息的多区域描述符。另外,构造了集成的多层图以找到先前步骤可能无法通过使用低级描述符进行种子传播来检测的区域。在这项工作中,我们利用了高,低级别信息以及一些基于学习的步骤的有用补充组件。我们的实验表明,该方法在广泛使用的公共数据库上优于可比的共显着性检测方法,并且还可以直接应用于共细分任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号